List of Publications Prof. Dr. Thomas Brüser
Showing results 11 - 20 out of 57
2021
Mehner-Breitfeld, D., Schwarzkopf, J. M. F., Young, R., Kondabagil, K., & Brüser, T. (2021). The Phage T4 Antiholin RI Has a Cleavable Signal Peptide, Not a SAR Domain. Frontiers in Microbiology, 12, Article 712460. https://doi.org/10.3389/fmicb.2021.712460
Valenzuela-Heredia, D., Henríquez-Castillo, C., Donoso, R., Lavín, P., Ulloa, O., Ringel, M. T., Brüser, T., & Campos, J. L. (2021). An unusual overrepresentation of genetic factors related to iron homeostasis in the genome of the fluorescent Pseudomonas sp. ABC1. Microbial Biotechnology, 14(3), 1060-1072. https://doi.org/10.1111/1751-7915.13753
2019
Geise, H., Heidrich, E. S., Nikolin, C. S., Mehner-Breitfeld, D., & Brüser, T. (2019). A potential late stage intermediate of twin-arginine dependent protein translocation in Escherichia coli. Frontiers in Microbiology, 10(JULY), Article 1482. https://doi.org/10.3389/fmicb.2019.01482, https://doi.org/10.15488/5218
2018
Heidrich, E. S., & Brüser, T. (2018). Evidence for a second regulatory binding site on PspF that is occupied by the C-terminal domain of PspA. PLOS ONE, 13(6), Article e0198564. https://doi.org/10.1371/journal.pone.0198564, https://doi.org/10.15488/4715
Hou, B., Heidrich, E. S., Mehner-Breitfeld, D., & Brüser, T. (2018). The TatA component of the twin-arginine translocation system locally weakens the cytoplasmic membrane of Escherichia coli upon protein substrate binding. Journal of Biological Chemistry, 293(20), 7592-7605. https://doi.org/10.1074/jbc.RA118.002205, https://doi.org/10.15488/11113
Mehner-Breitfeld, D., Rathmann, C., Riedel, T., Just, I., Gerhard, R., Overmann, J., & Brüser, T. (2018). Evidence for an adaptation of a phage-derived holin/endolysin system to toxin transport in Clostridioides difficile. Frontiers in Microbiology, 9, Article 2446. https://doi.org/10.3389/fmicb.2018.02446, https://doi.org/10.15488/4242
Ringel, M. T., Dräger, G., & Brüser, T. (2018). PvdO is required for the oxidation of dihydropyoverdine as the last step of fluorophore formation in Pseudomonas fluorescens. Journal of Biological Chemistry, 293(7), 2330-2341. https://doi.org/10.1074/jbc.RA117.000121
Ringel, M. T., & Brüser, T. (2018). The biosynthesis of pyoverdines. Microbial Cell, 5(10), 424-437. https://doi.org/10.15698/mic2018.10.649, https://doi.org/10.15488/4731
2017
Rathmann, C., Schlösser, A. S., Schiller, J., Bogdanov, M., & Brüser, T. (2017). Tat transport in Escherichia coli requires zwitterionic phosphatidylethanolamine but no specific negatively charged phospholipid. FEBS letters, 591(18), 2848-2858. https://doi.org/10.1002/1873-3468.12794
Ringel, M. T., Dräger, G., & Brüser, T. (2017). The periplasmic transaminase PtaA of Pseudomonas fluorescens converts the glutamic acid residue at the pyoverdine fluorophore to α-ketoglutaric acid. Journal of Biological Chemistry, 292(45), 18660-18671. https://doi.org/10.1074/jbc.M117.812545