Climate-smart agriculture practices for mitigating greenhouse gas emissions

authored by
M. Zaman, K. Kleineidam, L. Bakken, J. Berendt, C. Bracken, K. Butterbach-Bahl, Z. Cai, S. X. Chang, T. Clough, K. Dawar, W. X. Ding, P. Dörsch, M. dos Reis Martins, C. Eckhardt, S. Fiedler, T. Frosch, J. Goopy, C. M. Görres, A. Gupta, S. Henjes, M. E.G. Hofmann, M. A. Horn, M. M.R. Jahangir, A. Jansen-Willems, K. Lenhart, L. Heng, D. Lewicka-Szczebak, G. Lucic, L. Merbold, J. Mohn, L. Molstad, G. Moser, P. Murphy, A. Sanz-Cobena, M. Šimek, S. Urquiaga, R. Well, N. Wrage-Mönnig, S. Zaman, J. Zhang, C. Müller
Abstract

Agricultural lands make up approximately 37% of the global land surface, and agriculture is a significant source of greenhouse gas (GHG) emissions, including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Those GHGs are responsible for the majority of the anthropogenic globalwarming effect.Agricultural GHG emissions are associated with agricultural soil management (e.g. tillage), use of both synthetic and organic fertilisers, livestock management, burning of fossil fuel for agricultural operations, and burning of agricultural residues and land use change. When natural ecosystems such as grasslands are converted to agricultural production, 20-40% of the soil organic carbon (SOC) is lost over time, following cultivation.We thus need to develop management practices that can maintain or even increase SOC storage in and reduce GHG emissions from agricultural ecosystems. We need to design systematic approaches and agricultural strategies that can ensure sustainable food production under predicted climate change scenarios, approaches that are being called climate-smart agriculture (CSA). Climate-smart agricultural management practices, including conservation tillage, use of cover crops and biochar application to agricultural fields, and strategic application of synthetic and organic fertilisers have been considered a way to reduce GHG emission from agriculture. Agricultural management practices can be improved to decreasing disturbance to the soil by decreasing the frequency and extent of cultivation as a way to minimise soil C loss and/or to increase soil C storage. Fertiliser nitrogen (N) use efficiency can be improved to reduce fertilizer N application and N loss. Management measures can also be taken to minimise agricultural biomass burning. This chapter reviews the current literature on CSA practices that are available to reduce GHG emissions and increase soil C sequestration and develops a guideline on best management practices to reduce GHG emissions, increase C sequestration, and enhance crop productivity in agricultural production systems.

Organisation(s)
Institute of Microbiology
External Organisation(s)
International Atomic Energy Agency (IAEA)
Justus Liebig University Giessen
Norwegian University of Life Sciences
University of Rostock
University College Dublin
Karlsruhe Institute of Technology (KIT)
CAS - Institute of Atmospheric Physics
International Livestock Research Institute
Nanjing Normal University
University of Alberta
Lincoln University
NWFP Agricultural University
Chinese Academy of Sciences (CAS)
Embrapa - Empresa Brasileira de Pesquisa Agropecuaria
Technische Universität Darmstadt
Hochschule Geisenheim University
Independent Consultant
Picarro B.V., Eindhoven
Bangladesh Agricultural University
Münster University of Applied Sciences
University of Wrocław
PICARRO
Swiss Federal Laboratories for Material Science and Technology (EMPA)
Technical University of Madrid (UPM)
University of South Bohemia
Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries
University of Canterbury
Type
Contribution to book/anthology
Pages
303-328
No. of pages
26
Publication date
30.01.2021
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Environmental Science(all), Engineering(all), Agricultural and Biological Sciences(all)
Sustainable Development Goals
SDG 2 - Zero Hunger, SDG 13 - Climate Action, SDG 15 - Life on Land
Electronic version(s)
https://doi.org/10.1007/978-3-030-55396-8_8 (Access: Open)