Towards automated phenotyping in plant tissue culture
- verfasst von
- Hans Lukas Bethge
- betreut von
- Traud Winkelmann
- Abstract
Die pflanzliche In-vitro-Kultur umfasst wichtige grundlegende Methoden der modernen Pflanzenforschung, -vermehrung und -züchtung. Innovative wissenschaftliche Ansätze zur Wei-terentwicklung des Kultivierungsprozess können daher weitreichenden Einfluss auf viele unter-schiedliche Bereiche haben. Insbesondere die Automatisierung kann die Effizienz der In-vitro-Vermehrung steigern, die derzeit durch die intensive manuelle Arbeit beschränkt wird. Automa-tisierte Phänotypisierung von In-vitro-Kulturen ermöglicht es, die Erfassung von manuellen de-struktiven Endpunktmessungen auf eine kontinuierliche, objektive und digitale Quantifizierung der Pflanzenmerkmale auszuweiten. Dies kann zu einem besseren Verständnis entscheidender Entwicklungsprozesse führen und die Entstehung physiologischer Störungen zu klären. Ziel dieser Dissertation war es, das Potential optischer Erfassungsmethoden und des maschinellen Lernens für die pflanzliche In-vitro-Kultur unter interdisziplinären Gesichtspunk-ten zu untersuchen und exemplarisch aufzuzeigen. Ein neuartiger Phänotypisierungsroboter zur automatisierten, zerstörungsfreien, mehrdimensionalen In-situ-Erfassung von Pflanzenmerkmalen wurde auf Basis kostengünstiger Sensortechnik entwickelt. Unterschiedliche Sensortechnologien, darunter eine RGB-Kamera, ein Laser-Distanzsensor, ein Mikrospektrometer und eine Wärmebildkamera, wurden teils zum ersten Mal unter diesen schwierigen Bedingungen eingesetzt und im Hinblick auf die resultierende Datenqualität und Realisierbarkeit bewertet. Neben der Entwicklung dynamischer, halbautomatischer Datenverarbeitungspipelines, wurde die automatische Erfassung multisensorischer Daten über eine gesamte Subkulturpassage der In-vitro-Kulturen demonstriert. Dadurch konnte erstmals Zeitrafferaufnahmen verschiedener Ent-wicklungsprozesse von pflanzlichen In-vitro-Kulturen und das Auftreten von physiologischen Störungen in situ erfasst werden. Die digitale Bestimmung relevanter Kenngrößen wie der proji-zierten Pflanzenfläche, der durchschnittlichen Bestandshöhe und der maximalen Pflanzenhöhe wurde demonstriert, die als wichtige Deskriptoren für das pflanzliche Wachstum dienen können. Darüber hinaus konnte eine neue Methode für die Pflanzenwissenschaften entwickelt werden, um die Wasseraufnahme von Pflanzen und die Verdunstung von Kulturmedien auf der Grundlage einer zerstörungsfreien Quantifizierung des Medienvolumens zu überwachen. Der Phänotypisierungsroboter wurde zur Untersuchung der Entstehung der Wachs-tumsanomalie Hyperhydrizität eingesetzt. Hierfür wurden ein digitales Monitoring der Morpho-logie der Explantate mit begleitenden spektroskopischen Untersuchungen des Reflexionsverhal-tens im Zeitverlauf durchgeführt. Die durch Spektralanalyse identifizierten optischen Merkmale, wie den reduzierter Reflexionsgrad und die Hauptabsorptionspeaks der Hyperhydrizität in der SWIR-Region, konnten als die wichtigsten Unterscheidungsmerkmale durch ein Support-Vektor-Maschine-Model mit einer Genauigkeit von 84% auf dem Testsatz validiert werden und damit Machbarkeit der spektrale Identifizierung von Hyperhydrizität aufzeigen. Darüber wurde für die automatische Detektion der Hyperhydrizität auf Basis von RGB-Bildern ein neuronales Netz trainiert. Die hohen Kennzahlen im Testdatensatz wie die Präzision von 83,8 % und einem Recall von 95,7 % unterstreichen das Vorhandensein einer für die Erkennung ausreichenden Anzahl von Unterscheidungsmerkmalen innerhalb der räumlichen RGB-Daten. Somit konnte ein zweiter An-satz der automatischen Detektion von Hyperhydrizität durch RGB-Bilder präsentiert werden. Die resultierenden Sensordatensätze des Phänotypisierungsroboters wurden als unter-stützendes Werkzeug eines E-Learning Moduls zur Steigerung digitaler Kompetenzen im Bereich Sensortechnik, Datenverarbeitung und -auswertung in der Hochschulausbildung erprobt und an-hand der Befragung von Studierenden evaluiert. Diese Machbarkeitsstudie ergab eine insgesamt hohe Akzeptanz durch die Studierenden mit 70% guten bis sehr guten Bewertungen. Mit zuneh-mender Komplexität der Lernaufgabe fühlten sich die Studierenden jedoch überfordert und bewerteten die jeweilige Session schlechter. Zusammenfassend zielt diese Arbeit darauf ab den Weg für einen verstärkten Einsatz der automatisierten, sensorbasierten Phänotypisierung in Kombination mit den Techniken des ma-schinellen Lernens der Forschung und der kommerziellen Mikrovermehrung zukünftig zu ebnen.
- Organisationseinheit(en)
-
Abteilung Reproduktion und Entwicklung
- Typ
- Dissertation
- Anzahl der Seiten
- 117
- Publikationsdatum
- 2023
- Publikationsstatus
- Veröffentlicht
- Elektronische Version(en)
-
https://doi.org/10.15488/14601 (Zugang:
Offen)